-16t^2+16t+360=0

Simple and best practice solution for -16t^2+16t+360=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+16t+360=0 equation:



-16t^2+16t+360=0
a = -16; b = 16; c = +360;
Δ = b2-4ac
Δ = 162-4·(-16)·360
Δ = 23296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23296}=\sqrt{256*91}=\sqrt{256}*\sqrt{91}=16\sqrt{91}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{91}}{2*-16}=\frac{-16-16\sqrt{91}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{91}}{2*-16}=\frac{-16+16\sqrt{91}}{-32} $

See similar equations:

| -1.4x=2(x+2.16) | | x(2x)-162=0 | | 5s-4=22 | | -2+8n=n−9+6n | | 4x+-4=12 | | 5n+1=6+6n | | 6b+9=9b | | 3k+9=k+5 | | 5−n2=12 | | 3(x–4)+5=20 | | 5j=7+6j | | 32=-4-12d | | 5+7f=6f | | X^2+20x+50=5x-4 | | -g−14=15g+18 | | x*5=75 | | 16b=18+17b | | 10x−5=6x-256x−25 | | 5​(x-10​)=10​(x+3​) | | -7b-9=-10b | | 1/8h+4=7 | | 5=-5(x+1) | | 7z=-6+5z | | 3x+10=4x+-40 | | 12+x-4x=26 | | 8-11h=-14 | | 8x+20=8x+12 | | 0=81x²-90x+25 | | -3a=31 | | 21x=189 | | X+x+X+x-9=70 | | 2.41x+49=5.8081+7x |

Equations solver categories